

MIC5205

150mA Low-Noise LDO Voltage Regulator

General Description

The MIC5205 is an efficient linear voltage regulator with ultralow-noise output, very low dropout voltage (typically 17mV at light loads and 165mV at 150mA), and very low ground current ($600\mu A$ at 100mA output). The MIC5205 offers better than 1% initial accuracy.

Designed especially for hand-held, battery-powered devices, the MIC5205 includes a CMOS or TTL compatible enable/ shutdown control input. When shutdown, power consumption drops nearly to zero. Regulator ground current increases only slightly in dropout, further prolonging battery life.

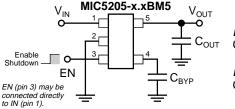
Key MIC5205 features include a reference bypass pin to improve its already excellent low-noise performance, reversed-battery protection, current limiting, and overtemperature shutdown.

The MIC5205 is available in fixed and adjustable output voltage versions in a small SOT-23-5 package.

Features

- Ultralow-noise output
- High output voltage accuracy
- Guaranteed 150mA output
- Low quiescent current
- Low dropout voltage
- Extremely tight load and line regulation
- Very low temperature coefficient
- Current and thermal limiting
- Reverse-battery protection
- "Zero" off-mode current
- Logic-controlled electronic enable

Applications

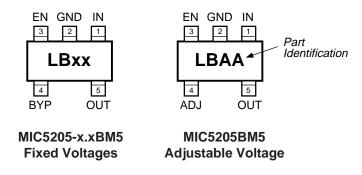

- Cellular telephones
- · Laptop, notebook, and palmtop computers
- Battery-powered equipment
- PCMCIA V_{CC} and V_{PP} regulation/switching
- Consumer/personal electronics
- SMPS post-regulator/dc-to-dc modules
- High-efficiency linear power supplies

Part Number	Marking	Voltage	Accuracy	Junction Temp. Range*	Package
MIC5205BM5	LBAA	Adj	1%	–40°C to +125°C	SOT-23-5
MIC5205-3.0BM5	LB30	3.0	1%	–40°C to +125°C	SOT-23-5
MIC5205-3.3BM5	LB33	3.3	1%	–40°C to +125°C	SOT-23-5
MIC5205-3.6BM5	LB36	3.6	1%	–40°C to +125°C	SOT-23-5
MIC5205-3.8BM5	LB38	3.8	1%	–40°C to +125°C	SOT-23-5
MIC5205-4.0BM5	LB40	4.0	1%	–40°C to +125°C	SOT-23-5
MIC5205-5.0BM5	LB50	5.0	1%	–40°C to +125°C	SOT-23-5

Ordering Information

Other voltages available. Contact Micrel for details.

Typical Application



 $\label{eq:constraint} \begin{array}{l} \textit{Low-Noise Operation:} \\ C_{\text{BYP}} = 470 p \text{F}, \ C_{\text{OUT}} \geq 2.2 \mu \text{F} \end{array}$

 $\begin{array}{l} \textit{Basic Operation:} \\ C_{\text{BYP}} = not \text{ used}, \ C_{\text{OUT}} \geq 1 \mu F \end{array}$

Low-Noise Regulator Application

Pin Configuration

Pin Description

MIC5205-x.x (fixed)	MIC5205 (adjustable)	Pin Name	Pin Function
1	1	IN	Supply Input
2	2	GND	Ground
3	3	EN	Enable/Shutdown (Input): CMOS compatible input. Logic high = enable, logic low or oopen = shutdown.
4		BYP	Reference Bypass: Connect external 470pF capacitor to GND to reduce output noise. May be left open.
	4	ADJ	Adjust (Input): Adjustable regulator feedback input. Connect to resistor voltage divider.
5	5	OUT	Regulator Output

Absolute Maximum Ratings (Note 1)

Supply Input Voltage (VIN)	–20V to +20V
Enable Input Voltage (V _{EN})	–20V to +20V
Power Dissipation (P _D)	Internally Limited
Lead Temperature (soldering, 5 sec.)	260°C
Junction Temperature (T _J)	–40°C to +125°C

Operating Ratings (Note 1)

Input Voltage (V _{IN})	+2.5V to +16V
Enable Input Voltage (V _{EN})	
Junction Temperature (T)	40°C to +125°C
Thermal Resistance, SOT-23-5 (θ _{JA})	

Electrical Characteristics

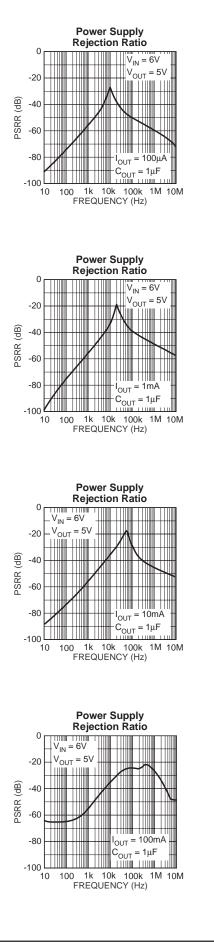
Symbol	Parameter	Conditions	Min	Typical	Max	Units
V _O	Output Voltage Accuracy	variation from specified V _{OUT}	-1 -2		1 2	% %
$\Delta V_{O} / \Delta T$	Output Voltage Temperature Coefficient	Note 2		40		ppm/°C
$\Delta V_0 / V_0$	Line Regulation	$V_{IN} = V_{OUT} + 1V$ to 16V		0.004	0.012 0.05	% / V % / V
$\Delta V_0 / V_0$	Load Regulation	I _L = 0.1mA to 150mA (Note 3)		0.02	0.2 0.5	% %
V _{IN} – V _O	Dropout Voltage, Note 4	I _L = 100μA		10	50 70	mV mV
		$I_L = 50 mA$		110	150 230	mV mV
		I _L = 100mA		140	250 300	mV mV
		I _L = 150mA		165	275 350	mV mV
I _{GND}	Quiescent Current	$V_{EN} \le 0.4V$ (shutdown) $V_{EN} \le 0.18V$ (shutdown)		0.01	1 5	μΑ μΑ
I _{GND}	Ground Pin Current, Note 5	$V_{EN} \ge 2.0V, I_L = 100\mu A$		80	125 150	μΑ μΑ
		$I_{L} = 50 \text{mA}$		350	600 800	μΑ μΑ
		I _L = 100mA		600	1000 1500	μA μA
		I _L = 150mA		1300	1900 2500	μΑ μΑ
PSRR	Ripple Rejection	frequency = 100Hz, $I_L = 100\mu A$		75	500	dB
I _{LIMIT}	Current Limit	$V_{OUT} = 0V$		320	500	mA
$\overline{\Delta V_O / \Delta P_D}$	Thermal Regulation	Note 6		0.05		%/W
e _{no}	Output Noise	$I_L = 50$ mA, $C_L = 2.2\mu$ F, 470pF from BYP to GND		260		nV√Hz

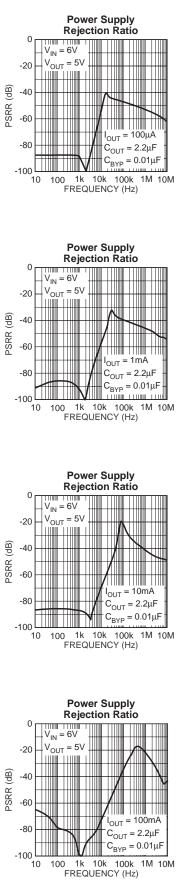
ENABLE Input

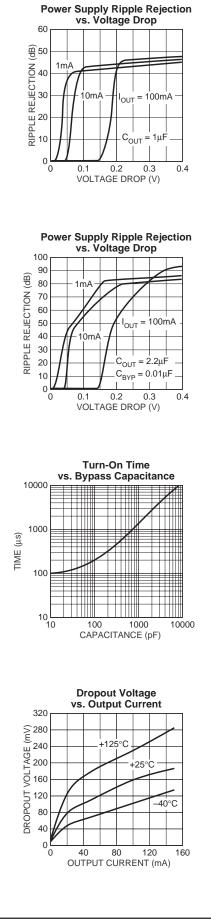
V _{IL}	Enable Input Logic-Low Voltage	regulator shutdown			0.4 0.18	V V
V _{IH}	Enable Input Logic-High Voltage	regulator enabled	2.0			V
I _{IL} I _{IH}	Enable Input Current	$ \begin{array}{l} V_{IL} \leq 0.4 V \\ V_{IL} \leq 0.18 V \\ V_{IH} \geq 2.0 V \\ V_{IH} \geq 2.0 V \end{array} $		0.01 5	-1 -2 20 25	μΑ μΑ μΑ μΑ

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(max)}$, the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{D(max)} = (T_{J(max)} - T_A) \theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. The θ_{JA} of the MIC5205-xxBM5 (all versions) is 220°C/W mounted on a PC board (see "Thermal Considerations" section for further details).

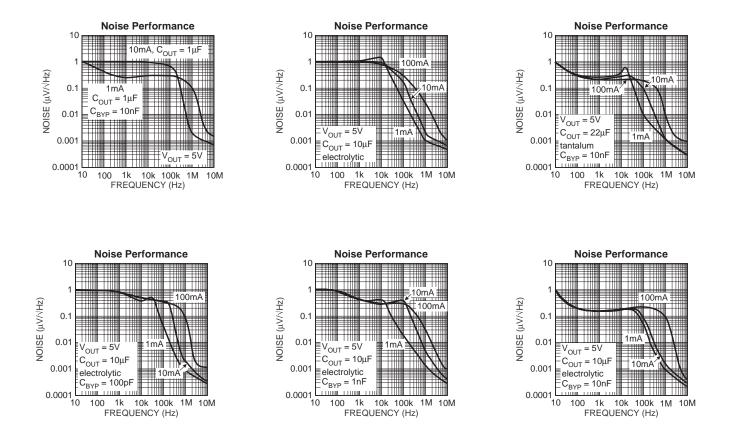
Note 2: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.


Note 3: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.


Note 4: Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.


Note 5: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

Note 6: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 150mA load pulse at $V_{IN} = 16V$ for t = 10ms.


Typical Characteristics

Typical Characteristics

Applications Information

Enable/Shutdown

Forcing EN (enable/shutdown) high (> 2V) enables the regulator. EN is compatible with CMOS logic gates.

If the enable/shutdown feature is not required, connect EN (pin 3) to IN (supply input, pin 1). See Figure 1.

Input Capacitor

A 1 μ F capacitor should be placed from IN to GND if there is more than 10 inches of wire between the input and the ac filter capacitor or if a battery is used as the input.

Reference Bypass Capacitor

BYP (reference bypass) is connected to the internal voltage reference. A 470pF capacitor (C_{BYP}) connected from BYP to GND quiets this reference, providing a significant reduction in output noise. C_{BYP} reduces the regulator phase margin; when using C_{BYP} , output capacitors of 2.2µF or greater are generally required to maintain stability.

The start-up speed of the MIC5205 is inversely proportional to the size of the reference bypass capacitor. Applications requiring a slow ramp-up of output voltage should consider larger values of C_{BYP} . Likewise, if rapid turn-on is necessary, consider omitting C_{BYP} .

If output noise is not a major concern, omit $\mathrm{C}_{\mathrm{BYP}}$ and leave BYP open.

Output Capacitor

An output capacitor is required between OUT and GND to prevent oscillation. The minimum size of the output capacitor is dependent upon whether a reference bypass capacitor is used. 1.0 μ F minimum is recommended when C_{BYP} is not used (see Figure 2). 2.2 μ F minimum is recommended when C_{BYP} is 470 μ F (see Figure 1). Larger values improve the regulator's transient response. The output capacitor value may be increased without limit.

The output capacitor should have an ESR (effective series resistance) of about 5 Ω or less and a resonant frequency above 1MHz. Most tantalum or aluminum electrolytic capacitors are adequate; film types will work, but are more expensive. Since many aluminum electrolytics have electrolytes that freeze at about -30° C, solid tantalums are recommended for operation below -25° C.

At lower values of output current, less output capacitance is required for output stability. The capacitor can be reduced to 0.47μ F for current below 10mA or 0.33μ F for currents below 1mA.

No-Load Stability

The MIC5205 will remain stable and in regulation with no load (other than the internal voltage divider) unlike many other voltage regulators. This is especially important in CMOS RAM keep-alive applications.

Fixed Regulator Applications

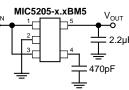


Figure 1. Low-Noise Fixed Voltage Application

Figure 1 includes a 470 μ F capacitor for low-noise operation and shows EN (pin 3) connected to IN (pin 1) for an application where enable/shutdown is not required. C_{OUT} = 2.2 μ F minimum.

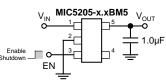
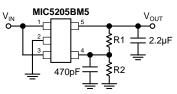


Figure 2. Basic Fixed Voltage Application


Figure 2 is an example of a basic configuration where the lowest-noise operation is not required. $C_{OUT} = 1 \mu F$ minimum.

Adjustable Regulator Applications

Figure 3 shows the MIC5205BM5 adjustable output voltage configuration. Two resistors set the output voltage. The formula for output voltage is:

$$V_{OUT} = 1.242V \times \left(\frac{R2}{R1} + 1\right)$$

Resistor values are not critical because ADJ (adjust) has a high input impedance, but for best results use resistors of $470k\Omega$ or less. A capacitor from ADJ to ground provides greatly improved noise performance.

Figure 3. Low-Noise Adjustable Voltage Application

Figure 3 includes the optional 470pF noise bypass capacitor from ADJ to GND to reduce output noise.

Dual-Supply Operation

When used in dual supply systems where the regulator load is returned to a negative supply, the output voltage must be diode clamped to ground.

Layout

The MIC5205-xxBM5 (5-lead SOT-23 package) has the following thermal characteristics when mounted on a single layer copper-clad printed circuit board.

PC Board Dielectric	θ_{JA}
FR4	220°C/W
Ceramic	200°C/W

Multilayer boards having a ground plane, wide traces near the pads, and large supply bus lines provide better thermal conductivity.

The "worst case" value of 220°C/W assumes no ground plane, minimum trace widths, and a FR4 material board.

Nominal Power Dissipation and Die Temperature

The MIC5205-xxBM5 at a 25°C ambient temperature will operate reliably at over 450mW power dissipation when mounted in the "worst case" manner described above. At an ambient temperature of 40°C, the device may safely dissipate over 380mW. These power levels are equivalent to a die temperature of 125°C, the maximum operating junction temperature for the MIC5205.

For additional heat sink characteristics, please refer to Micrel Application Hint 17, "Calculating P.C. Board Heat Sink Area For Surface Mount Packages".